ptulsconv Documentation
Release 2.1.0

Jamie Hardt

Nov 16, 2023

USER DOCUMENTATION

1 Quick Start
1.1 Step 1: Use Pro Tools to Spot ADR Lines
1.2 Step 2: Add More Information to Your Spots L L
1.3 Step3: Runprulsconv e
2 Tagging
2.1 FeldsinClip Names 0 e e e e e e e
2.2 Fieldsin Track Names and Markers e
2.3 Apply Fieldsto a Time Range of Clips i it
2.4 Combining Clips with Long Names or Many Tags
2.5 Setting Document Options L e e e
3 ptulsconv For ADR Report Generation
3.1 Reports Created by the ADR Report Generator,
3.2 Tags Used by the ADR Report Generator
4 Command-Line Reference
4.1 Usage Form. e e e e e e e
42 Flags o e e e e e e e e
4.3 Alternate Output Formats e e e e e
5 Contributing
5.1 Testing . . . o oL e e e e e e e e e e
6 Theory of Operation
6.1 Execution Flow When Producing “doc” Output
7 Parsing
7.1 Docparser ClasSes . . . v v v v v v e e e e e e e e e e e e e e e e e e e
8 Auxiliary and Helper Modules
8.1 CommandsModule
8.2 Broadcast Timecode Module e
8.3 Footage Module e e e e
84 ReportingModule e e
8.5 Validations Module L e
9 Indices and tables
Python Module Index

FNUSERUS I JS)

AN N Lt

=N 9

13
13

15
15

17
17
18
18
18
19

21

23

Index

25

ptulsconv Documentation, Release 2.1.0

ptulsconv is a tool for converting Pro Tools text exports into PDF reports for ADR spotting. It can also be used for
converting text exports into JSON documents for processing by other applications.

USER DOCUMENTATION 1

ptulsconv Documentation, Release 2.1.0

2 USER DOCUMENTATION

CHAPTER
ONE

QUICK START

The workflow for creating ADR reports in ptulsconv is similar to other ADR spotting programs: spot ADR lines in Pro
Tools with clips using a special code to take notes, export the tracks as text and then run the program.

1.1 Step 1: Use Pro Tools to Spot ADR Lines

ptulsconv can be used to spot ADR lines similarly to other programs.
1. Create a new Pro Tools session, name this session after your project.
2. Create new tracks, one for each character. Name each track after a character.

3. On each track, create a clip group (or edit in some audio) at the time you would like an ADR line to appear in
the report. Name the clip after the dialogue you are replacing at that time.

1.2 Step 2: Add More Information to Your Spots

Clips, tracks and markers in your session can contain additional information to make your ADR reports more complete
and useful. You add this information with ragging.

¢ Every ADR clip must have a unique cue number. After the name of each clip, add the letters $QN= and then a
unique number (any combination of letters or numbers that don’t contain a space). You can type these yourself
or add them with batch-renaming when you’re done spotting.

* ADR spots should usually have a reason indicated, so you can remember exactly why you’re replacing a particular
line. Do this by adding the the text {R= to your clip names after the prompt and then some short text describing
the reason, and then a closing }. You can type anything, including spaces.

* If, for example, a line is a TV cover line, you can add the text [TV] to the end.

So for example, some ADR spot’s clip name might look like:

Get to the ladder! {R=Noise} $QN=]1001
"Forget your feelings! {R=TV Cover} $QN=]1002 [TV]

These tags can appear in any order.

* You can add the name of an actor to a character’s track, so this information will appear on your reports. In the
track name, or in the track comments, type {Actor=xxx} replacing the xxx with the actor’s name.

* Characters need to have a number (perhaps from the cast list) to express how they should be collated. Add
$CN=xxx with a unique number to each track (or the track’s comments.)

ptulsconv Documentation, Release 2.1.0

 Set the scene for each line with markers. Create a marker at the beginning of a scene and make it’s name
{Sc=xxx}, replacing the xxx with the scene number and name.

1.3 Step 3: Run ptulsconv

In Pro Tools, select the tracks that contain your spot clips.

Then, in your Terminal, run the following command:

ptulsconv

ptulsconv will connect to Pro Tools and read all of the clips on the selected track. It will then create a folder named
“Title. CURRENT_DATE”, and within that folder it will create several PDFs and folders:

* “TITLE ADR Report” a PDF tabular report of every ADR line you’ve spotted.
* “TITLE Continuity” a PDF listing every scene you have indicated and its timecode.

e “TITLE Line Count” a PDF tabular report giving line counts by reel, and the time budget per character and reel
(if provided in the tagging).

* “CSV/” afolder containing CSV documents of all spotted ADR, groupd by character and reel.
» “Director Logs/” a folder containing PDF tabular reports, like the overall report except groupd by character.

* “Supervisor Logs/” a folder containing PDF reports, one page per line, designed for note taking during a session,
particularly on an iPad.

* “Talent Scripts/” a folder containing PDF scripts or sides, with the timecode and prompts for each line, grouped
by character but with most other information suppressed.

4 Chapter 1. Quick Start

CHAPTER
TWO

TAGGING

Tags are used to add additional data to a clip in an organized way. The tagging system in prulsconv is flexible and can

be used to add any kind of extra data to a clip.

2.1 Fields in Clip Names

Track names, track comments, and clip names can also contain meta-tags, or “fields,” to add additional columns to the

output. Thus, if a clip has the name::

Fireworks explosion {note=Replace for final} $V=1 [FX] [DESIGN]

The row output for this clip will contain columns for the values:

Clip Name note V | FX | DESIGN
Fireworks explosion | Replace for final | 1 | FX | DESIGN

These fields can be defined in the clip name in three ways:

e $NAME=VALUE creates a field named NAME with a one-word value VALUE.

o {NAME=VALUE} creates a field named NAME with the value VALUE. VALUE in this case may contain spaces or any

chartacter up to the closing bracket.

e [NAME] creates a field named NAME with a value NAME. This can be used to create a boolean-valued field; in the
output, clips with the field will have it, and clips without will have the column with an empty value.

For example, if three clips are named::

"Squad fifty-one, what is your status?" [FUTZ] {Ch=Dispatcher} [ADR]
"We are ten-eight at Rampart Hospital." {Ch=Gage} [ADR]

(1M) FC callouts rescuing trapped survivors. {Ch=Group} $QN=1001 [GROUP]

The output will contain the range:

Clip Name Ch FUTZ | ADR | QN | GROUP
“Squad fifty-one, what is your status?” Dispatcher | FUTZ | ADR
“We are ten-eight at Rampart Hospital.” Gage ADR
(IM) FC callouts rescuing trapped survivors. | Group 1001 | GROUP

ptulsconv Documentation, Release 2.1.0

2.2 Fields in Track Names and Markers

Fields set in track names, and in track comments, will be applied to each clip on that track. If a track comment contains
the text {Dept=Foley} for example, every clip on that track will have a “Foley” value in a “Dept” column.

Likewise, fields set on the session name will apply to all clips in the session.

Fields set in markers, and in marker comments, will be applied to all clips whose finish is after that marker. Fields
in markers are applied cumulatively from breakfast to dinner in the session. The latest marker applying to a clip has
precedence, so if one marker comes after the other, but both define a field, the value in the later marker

An important note here is that, always, fields set on the clip name have the highest precedence. If a field is set in a clip
name, the same field set on the track, the value set on the clip will prevail.

2.3 Apply Fields to a Time Range of Clips

A clip name beginning with @ will not be included in the output, but its fields will be applied to clips within its time
range on lower tracks.

If track 1 has a clip named @ {Sc=1- The House}, any clips beginning within that range on lower tracks will have a
field Sc with that value.

2.4 Combining Clips with Long Names or Many Tags

A clip name beginning with & will have its parsed clip name appended to the preceding cue, and the fields of following
cues will be applied, earlier clips having precedence. The clips need not be touching, and the clips will be combined
into a single row of the output. The start time of the first clip will become the start time of the row, and the finish time
of the last clip will become the finish time of the row.

2.5 Setting Document Options

Note: Document options are not yet implemented.

6 Chapter 2. Tagging

CHAPTER
THREE

PTULSCONYV FOR ADR REPORT GENERATION

3.1 Reports Created by the ADR Report Generator

(FIXME: write this)

3.2 Tags Used by the ADR Report Generator

3.2.1 Project-Level Tags

It usually makes sense to place these either in the session name, or on a marker at the beginning of the session, so it
will apply to all of the clips in the session.

Title
The title of the project. This will appear at the top of every report.

Warning: prulsconv at this time only supports one title per export. If you attempt to use multiple titles in one
export it will fail.

Supyv
The supervisor of the project. This appears at the bottom of every report.

Client
The client of the project. This will often appear under the title on every report.

Spot
The date or version number of the spotting report.

3.2.2 Time Range Tags

All of these tags can be set to different values on each clip, but it often makes sense to use these tags in a fime range.

Sc
The scene description. This appears on the continuity report and is used in the Director’s logs.

Ver
The picture version. This appears beside the spot timecodes on most reports.

Reel
The reel. This appears beside the spot timecodes on most reports and is used to summarize line totals on the line
count report.

ptulsconv Documentation, Release 2.1.0

3.2.3 Line tags

P
Priority.

ON

Cue number. This appears on all reports.

Warning: ptulsconv will verify that all cue numbers in a given title are unique.

All lines must have a cue number in order to generate reports, if any lines do not have a cue number set, ptulsconv
will fail.

CN
Character number. This is used to collate character records and will appear on the line count and in character-
collated reports.

Char
Character name. By default, a clip will set this to the name of the track it appears on, but the track name can be
overridden here.

Actor
Actor name.

Line
The prompt to appear for this ADR line. By default, this will be whatever text appears in a clip name prior to the
first tag.

R
Reason.

Mins
Time budget for this line, in minutes. This is used in the line count report to give estimated times for each

character. This can be set for the entire project (with a marker), or for individual actors (with a tag in the track
comments), or can be set for individual lines to override these.

Shot
Shot. A Date or other description indicating the line has been recorded.

3.2.4 Boolean-valued ADR Tag Fields

EFF
Effort. Lines with this tag are subtotaled in the line count report.

TV
TV line. Lines with this tag are subtotaled in the line count report.

TBW
To be written.

ADLIB
Ad-lib.

OPT
Optional. Lines with this tag are subtotaled in the line count report.

8 Chapter 3. ptulsconv For ADR Report Generation

CHAPTER
FOUR

COMMAND-LINE REFERENCE

4.1 Usage Form

Invocations of ptulsconv take the following form:

ptulsconv [options] IN_FILE

4.2 Flags

-h,—help
Show the help message.

fFMT,—format=FMT
Select the output format. By default this is doc, which will generate ADR reports.

The other available options are raw and tagged.

4.2.1 Informational Options

These options display information and exit without processing any input documents.

—show-formats
Display information about available output formats.

—show-available-tags
Display information about tags that are used by the report generator.

4.3 Alternate Output Formats

4.3.1 raw Output

The “raw” output format is a JSON document of the parsed input data.

The document is a top-level dictionary with keys for the main sections of the text export: header, files, clips, plugins,
tracks and markers, and the values for these are a list of section entries, or a dictionary of values, in the case of header.

The text values of each record and field in the text export is read and output verbatim, no further processing is done.

ptulsconv Documentation, Release 2.1.0

4.3.2 tagged Output

The “tagged” output format is also a JSON document based on the parsed input data, after the additional step of
processing all of the fags in the document.

The document is a top-level array of dictionaries, one for each recognized ADR spotting clip in the session. Each
dictionary has a clip_name, track_name and session_name key, a tags key that contains a dictionary of every parsed
tag (after applying tags from all tracks and markers), and a start and end key. The start and end key contain the parsed
timecode representations of these values in rational number form, as a dictionary with numerator and denominator
keys.

10 Chapter 4. Command-Line Reference

CHAPTER
FIVE

CONTRIBUTING

5.1 Testing

Before submitting PRs or patches, please make sure your branch passes all of the unit tests by running Pytest.

11

ptulsconv Documentation, Release 2.1.0

12 Chapter 5. Contributing

CHAPTER
SIX

THEORY OF OPERATION

6.1 Execution Flow When Producing “doc” Output

1. The command line argv is read in ptulsconv.__main__.main(), which calls ptulsconv.commands.
convert()

2. ptulsconv.commands. convert () reads the input with ptuslconv.docparser.doc_parser_visitor(),
which uses the parsimonious library to parse the input into an abstract syntax tree, which the parser visitor
uses to convert into a ptulsconv.docparser.doc_entity.SessionDescriptor, which structures all of the
data in the session output.

3. The next action based on the output format. In the case of the “doc” output format, it runs some validations on
the input, and calls ptulsconv. commands. generate_documents().

4. ptulsconv.commands.generate_documents () creates the output folder, creates the Continuity report with
ptulsconv.pdf.continuity.output_continuity() (this document requires some special-casing), and at
the tail calls. ..

5. ptulsconv.commands.create_adr_reports(), which creates folders for

(FIXME finish this)

13

ptulsconv Documentation, Release 2.1.0

14 Chapter 6. Theory of Operation

CHAPTER
SEVEN

PARSING

7.1 Docparser Classes

class ptulsconv.docparser.adr_entity.ADRLine (title: str =", supervisor: Optional[str] = None, client:
Optional[str] = None, scene: Optional[str] = None,
version: Optional[str] = None, reel: Optional[str] =
None, start: fractions.Fraction = Fraction(0, 1), finish:
fractions.Fraction = Fraction(0, 1), omitted: bool =
False, note: Optional[str] = None, requested_by:
Optional[str] = None, priority: Optional[int] = None,
cue_number: Optional[str] = None, character_id:
Optional[str] = None, character_name: Optional[str] =
None, actor_name: Optional[str] = None, prompt:
Optional[str] = None, reason: Optional[str] = None,
time_budget_mins: Optional[float] = None, spot:
Optional[str] = None, shot: Optional[str] = None, effort:
bool = False, tv: bool = False, tbw: bool = False, adlib:
bool = False, optional: bool = False)

actor_name: Optional[str] = None
adlib: bool = False

character_id: Optional[str] = None
character_name: Optional[str] = None
cue_number: Optional[str] = None
effort: bool = False

optional: bool = False

priority: Optional[int] = None
prompt: Optional[str] = None

reason: Optional[str] = None

shot: Optional[str] None

spot: Optional[str] None

15

ptulsconv Documentation, Release 2.1.0

tag_mapping = [<ptulsconv.docparser.tag_mapping.TagMapping object>,
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.
<ptulsconv.

tbw: bool

time_budget_mins:

tv: bool =

docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.
docparser.

= False

False

tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.
tag_mapping.

TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping
TagMapping

Optional[float] = None

object>,
object>,
object>,
object>,
object>,
object>,
object>,
object>,
object>,
object>,
object>,
object>,
object>,
object>]

16

Chapter 7. Parsing

CHAPTER
EIGHT

AUXILIARY AND HELPER MODULES

8.1 Commands Module

This module provides the main input document parsing and transform implementation.

class ptulsconv.commands.FractionEncoder (*, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, sort_keys=False, indent=None,
separators=None, default=None)

A subclass of JSONEncoder which encodes Fraction objects as a dict.

default (o)

ptulsconv.commands. convert (major_mode, input_file=None, output=<_io.TextlIOWrapper name="'<stdout>"
mode="w' encoding="utf-8'>, warnings=True)
Primary worker function, accepts the input file and decides what to do with it based on the major_mode.
Parameters
» input_file - a path to the input file.
» major_mode — the selected output mode, ‘raw’, ‘tagged’ or ‘doc’.

ptulsconv.commands.create_adr_reports(lines: List{ ADRLine], tc_display_format: TimecodeFormat,
reel_list: List[str])

Creates a directory heirarchy and a respective set of ADR reports, given a list of lines.
ptulsconv.commands.generate_documents (session_tc_format, scenes, adr_lines: Listf ADRLine], title)
Create PDF output.

ptulsconv.commands.output_adr_csv(lines: Listf ADRLine], time_format: TimecodeFormat)

Writes ADR lines as CSV to the current working directory. Creates directories for each character number and
name pair, and within that directory, creates a CSV file for each reel.

ptulsconv.commands.perform_adr_validations(lines: Iterator[ADRLine])
Performs validations on the input.

17

ptulsconv Documentation, Release 2.1.0

8.2 Broadcast Timecode Module

Useful functions for parsing and working with timecode.

class ptulsconv.broadcast_timecode.TimecodeFormat (frame_duration, logical_fps, drop_frame)

A struct reperesenting a timecode datum.

ptulsconv.broadcast_timecode.smpte_to_frame_count (smpte_rep_string: str, frames_per_logical_second:
int, drop_frame_hint=False) — Optional[int]

Convert a string with a SMPTE timecode representation into a frame count.
Parameters
* smpte_rep_string — The timecode string

» frames_per_logical_second — Num of frames in a logical second. This is asserted to be
in one of [24,25,30,48,50,60]

* drop_frame_hint — True if the timecode rep is drop frame. This is ignored (and implied
True) if the last separator in the timecode string is a semicolon. This is ignored (and implied
False) if frames_per_logical_second is not 30 or 60.

8.3 Footage Module

Methods for converting string reprentations of film footage.

ptulsconv. footage. footage_to_seconds (footage: str) — Optional[Fraction]

Converts a string representation of a footage (35mm, 24fps) into a Fraction, this fraction being a some number
of seconds.

Parameters
footage — A string reprenentation of a footage of the form resembling “90+01”.

8.4 Reporting Module

Reporting logic. These methods provide reporting methods to the package and take some pains to provide nice-looking
escape codes if we’re writing to a tty.

ptulsconv.reporting.print_advisory_tagging_error (failed_string, position, parent_track_name=None,
clip_time=None)

ptulsconv.reporting.print_banner_style (message)
ptulsconv.reporting.print_fatal_error (message)
ptulsconv.reporting.print_section_header_style (message)
ptulsconv.reporting.print_status_style(message)

ptulsconv.reporting.print_warning (warning_string)

18 Chapter 8. Auxiliary and Helper Modules

ptulsconv Documentation, Release 2.1.0

8.5 Validations Module

Validation logic for enforcing various consistency rules.

class ptulsconv.validations.ValidationError (message: str, event:
Optional[ptulsconv.docparser.adr_entity. ADRLine] =
None)

event: Optional[ADRLine] = None
message: str
report_message()

ptulsconv.validations.validate_dependent_value (input_lines: Iterator[ADRLine], key_field,
dependent_field)

Validates that two events with the same value in key_field always have the same value in dependent_field

ptulsconv.validations.validate_non_empty_field(input_lines: Iterator[ADRLine], field='cue_number")
ptulsconv.validations.validate_unique_count (input_lines: Iterator[ADRLine], field='title', count=1)

ptulsconv.validations.validate_unique_field(input_lines: Iterator[ADRLine], field='cue_number’,
scope=None)

ptulsconv.validations.validate_value (input_lines: Iterator[ADRLine], key_field, predicate)

8.5. Validations Module 19

ptulsconv Documentation, Release 2.1.0

20 Chapter 8. Auxiliary and Helper Modules

CHAPTER
NINE

INDICES AND TABLES

* modindex
* genindex

¢ search

21

ptulsconv Documentation, Release 2.1.0

22 Chapter 9. Indices and tables

P

ptulsconv
ptulsconv
ptulsconv
ptulsconv
ptulsconv

.broadcast_timecode, 18
.commands, 17
.footage, 18
.reporting, 18
.validations, 19

PYTHON MODULE INDEX

23

ptulsconv Documentation, Release 2.1.0

24 Python Module Index

A

actor_name (ptulsconv.docparser.adr_entity.ADRLine
attribute), 15
(ptulsconv.docparser.adr_entity. ADRLine
tribute), 15

ADRLine (class in ptulsconv.docparser.adr_entity), 15

C

adlib at-

character_id (ptulsconv.docparser.adr_entity.ADRLine

attribute), 15

character_name (ptulsconv.docparser.adr_entity. ADRLine

attribute), 15

convert() (in module ptulsconv.commands), 17

create_adr_reports() (in
ptulsconv.commands), 17

cue_number (ptulsconv.docparser.adr_entity.ADRLine
attribute), 15

module

D

default() (ptulsconv.commands.FractionEncoder
method), 17

E

effort (ptulsconv.docparser.adr_entity.ADRLine at-
tribute), 15

event (ptulsconv.validations.ValidationError attribute),
19

F

footage_to_seconds () (in module ptulsconv.footage),
18
FractionEncoder (class in ptulsconv.commands), 17

G

generate_documents ()
ptulsconv.commands), 17

(in module

M

message (ptulsconv.validations.ValidationError at-
tribute), 19

module

INDEX

ptulsconv.broadcast_timecode, 18
ptulsconv.commands, 17
ptulsconv. footage, 18
ptulsconv.reporting, 18
ptulsconv.validations, 19

O

optional (ptulsconv.docparser.adr_entity.ADRLine at-
tribute), 15

output_adr_csv() (in module ptulsconv.commands),

17

P

perform_adr_validations() (in module
ptulsconv.commands), 17

print_advisory_tagging_error() (in module
ptulsconv.reporting), 18

print_banner_style() (in module

ptulsconv.reporting), 18
print_fatal_error () (in module ptulsconv.reporting),
18

print_section_header_style() (in module
ptulsconv.reporting), 18
print_status_style() (in module

ptulsconv.reporting), 18
print_warning () (in module ptulsconv.reporting), 18
priority (ptulsconv.docparser.adr_entity.ADRLine at-
tribute), 15
prompt (ptulsconv.docparser.adr_entity.ADRLine
tribute), 15
ptulsconv.broadcast_timecode
module, 18
ptulsconv.commands
module, 17
ptulsconv. footage
module, 18
ptulsconv.reporting
module, 18
ptulsconv.validations
module, 19

at-

25

ptulsconv Documentation, Release 2.1.0

R

reason (ptulsconv.docparser.adr_entity.ADRLine at-
tribute), 15

report_message() (ptulsconv.validations.ValidationError
method), 19

S

shot (ptulsconv.docparser.adr_entity.ADRLine at-
tribute), 15

smpte_to_frame_count () (in module
ptulsconv.broadcast_timecode), 18

spot (ptulsconv.docparser.adr_entity.ADRLine at-
tribute), 15

T

tag_mapping (ptulsconv.docparser.adr_entity.ADRLine
attribute), 15

tbw (ptulsconv.docparser.adr_entity.ADRLine attribute),
16

time_budget_mins (ptulsconv.docparser.adr_entity.ADRLine
attribute), 16

TimecodeFormat (class in
ptulsconv.broadcast_timecode), 18

tv (ptulsconv.docparser.adr_entity.ADRLine attribute),

16
V
validate_dependent_value() (in module
ptulsconv.validations), 19
validate_non_empty_field() (in module
ptulsconv.validations), 19
validate_unique_count () (in module
ptulsconv.validations), 19
validate_unique_field() (in module

ptulsconv.validations), 19

validate_value() (in module ptulsconv.validations),
19

ValidationError (class in ptulsconv.validations), 19

26

Index

	Quick Start
	Step 1: Use Pro Tools to Spot ADR Lines
	Step 2: Add More Information to Your Spots
	Step 3: Run ptulsconv

	Tagging
	Fields in Clip Names
	Fields in Track Names and Markers
	Apply Fields to a Time Range of Clips
	Combining Clips with Long Names or Many Tags
	Setting Document Options

	ptulsconv For ADR Report Generation
	Reports Created by the ADR Report Generator
	Tags Used by the ADR Report Generator
	Project-Level Tags
	Time Range Tags
	Line tags
	Boolean-valued ADR Tag Fields

	Command-Line Reference
	Usage Form
	Flags
	Informational Options

	Alternate Output Formats
	raw Output
	tagged Output

	Contributing
	Testing

	Theory of Operation
	Execution Flow When Producing “doc” Output

	Parsing
	Docparser Classes

	Auxiliary and Helper Modules
	Commands Module
	Broadcast Timecode Module
	Footage Module
	Reporting Module
	Validations Module

	Indices and tables
	Python Module Index
	Index

